ON THE USE OF METHYL SUBSTITUTED POLY(VINYLNAPHTHALENE) AS A REVERSIBLE SINGLET OXYGEN CARRIER'

Isa0 Saito,* Ryu Nagata and Teruo Matsuura Department of Synthetic Chemistry, Faculty of Engineering Kyoto University, Kyoto 606, Japan

Summary : Poly11,4-&methyl-6-vinylnaphthalenei and poly(1,2,4-trimethyl-6- VinyZnaphthaZene) react with singlet oxygen to give corresponding endoperoxide polymers which on warming generate singlet oxygen efficiently. Singlet oxygenations by the use of these polymers have been described.

Since singlet oxygen was shown to be involved in a variety of chemical and biochemical phenomena, there has been a surge of interest in chemical methods of producing singlet oxygen (¹0₂).² Development of organic polymers that can absorb and release ¹0₂ reversibly seems to be **particularly useful not only for the purpose of oxygenations of organic substrates but also for the storage of this electronically excited oxygen molecule. We report here that methyl 1 substituted poly(2-vinylnaphthalene) (3,:) can absorb O2 smoothly at 0 "C to produce** corresponding endoperoxide polymers (3a,b) which on warming to room temperature revert to 2a,b with the liberation of 1_{0_2} .³ The endoperoxide polymers can also be used as a convenient 1_{0_2} **source for oxygenations in non-solvent system. 4**

The monomers 1,4-dimethyl-6-vinylnaphthalene (\$)5 and 1,2,4-trimethyl-6-vinylnaphthalene (lb)⁶ were obtained in straightforward fashion as outlined in Scheme 1.⁷ Polymerization of monomers la and lb in degassed benzene (AIBN, 70 °C) followed by precipitation from methanol gave 2a (88%, M.W. 23,000) and 2b (92%, M.W. 19,000), respectively.

When a solution of polymer 2a or 2b in dichloromethane was photooxygenated at 0 °C in the **presence of methylene blue, approximately 0.9 equiv mole of oxygen with respect to a naphthalene unit in the polymer was consumed. 9 Removal of the solvent followed by precipitation from** methanol gave the corresponding endoperoxide polymers (3a,b) in almost quantitative yield.

4231

Scheme 1

d) AIBN/C₆H₆/70 °C

Warming the solution of 3a in 1,2-dichloroethane to 30 °C gradually produced 2a as evidenced by the appearance of UV absorption of the naphthalene ring, with the concomitant formation of ¹0₂ **(Fig. 1). The kinetic parameters for the thennolysis of the endoperoxide polymers are shown in** Table I. The formation of ¹O₂ was confirmed by the reaction with typical singlet oxygen acceptors such as 1,2-dimethylcyclohexene (4) . For example, reaction of $3b$ (0.45 M eq^{10}) and 4 (0.09 M) in dichloromethane (40 °C, 5 h) followed by NaBH₄ reduction provided 5 and <u>6</u> wi
৵ the ratio of 94 : 6 (Eq 1)¹ A trapping experiment using 3b (15 mM eq¹⁰) and 2,5-di-tertbutylfuran (30 mM) as a 1 O₂ trap in dichloromethane at 35 °C under N₂ has shown that 1 O₂ is **liberated in more than 78% yield under the conditions.**

The usefulness of 3b as a 1 0₂ source is also illustrated by the oxygenations of 2,3diphenyl-p-dioxene (7) and citronellol (8). Warming a solution of $3b$ (0.2 M eq¹⁰) and *1* (0.06 M) in dichloromethane to 40 °C (6 h) produced 9 (96%), whereas heating (40 °C, 6 h) of the film prepared by evaporating the dichloromethane solution of 3b and 7 below 10 °C gave the same product 9 (77%) (Eq 2). Similarly, singlet oxygenation of $8/10.2$ M) by using $36/1$ M eq¹⁰) **either in solution or film gave a mixture of the hydroperoxides 10 and 2 in almost same ratio *** as illustrated in Eq 3. After oxygenations resulting polymer 2b was easily recovered by **precipitation from methanol and can be reused without further purification.**

REFERENCES AND NOTES

- **1. Photoinduced Reactions 136.**
- **2. R. W. Murray, "Singlet Oxygen", H. H. Wasserman and R. W. Murray, Eds., Academic Press, New York, 1979, p 59.**
- **3. For naphthalene endoperoxides as 1 02 sources, see (a) H. H. Wasserman and D. L. Larsen, J. Chem. Sot. Chem. Commun., lg2, 253; (b) I. Saito and T. Matsuura, ref 2, p 511.**
- 4. For a water-soluble $^{\text{1}}$ O₂ source, see I. Saito, T. Matsuura and K. Inoue, <u>J. Am. Chem. Soc.,</u> **19, 188 (1981).**
- 5. Mp 48-49 °C; ¹H NMR (CDC1₃) 6 2.62 (s, 6 H), 5.31 (dd, 1 H, J = 11, 2 Hz), 5.83 (dd, 1 H, **J** = 17, 2 Hz), 6.93 (dd, 1 H, J = 17, 11 Hz), 7.13 (bs, 2 H), 7.63 (dd, 1 H, J = $\overline{9}$, 2 Hz), **7.88 (bs, 1 H), 7.96 (d, 1 H, J = 9 Hz).**
- **6. Mp 40-41 °C;** 1 **H NMR (CDC1₃) 6 2.38 (s, 3 H), 2.47 (s, 3 H), 2.56 (s, 3 H), 5.24 (dd, 1 H, J = 11, 2 Hz), 5.78 (dd, 1 H, J = 18, 2 Hz), 6.89 (dd, 1 H, J = 18, 11 Hz), 7.03 (bs,** 1 H), **7.51 (dd. 1 H, J = 9, 2 Hz), 7.78 (d, 1 H, J = 2 Hz), 7.89 (d, 1 H, J = 9 Hz).**
- 7. Yields for each step: a) 35% (R = H), 66% (R = Me)⁸; b) 93% (R = H), 82% (R = Me); c) **81% (R = H), 85% (R = Me).**
- **8. The structure of 1,2,4-trimethyl-6-acetylnaphthalene (mp 96.5-97 "C)was confirmed by NOE technique ('H NMR).**
- **9. The progress of the reaction was monitored by the disappearance of UV absorption of the naphthalene rings.**
- **10. Based on the concentration of a naphthalene endoperoxide unit in the polymer as determined by UV spectroscopy.**
- **11. K. Gollnick and H. J. Kuhn, ref 2, p 287.**

(Received in Japan 30 June 1981)